

**STATE OF VERMONT
PUBLIC UTILITY COMMISSION**

Tariff filing of Green Mountain Power Corporation)
requesting a change in rates, effective October 1,) Case No. 26-____-TF
2026)

Petition of Green Mountain Power for approval of its)
new multi-year regulation plan pursuant to 30 V.S.A.) Case No. 25-1955-PET
§§ 209, 218, and 218d.)

**PREFILED DIRECT & SUPPLEMENTAL TESTIMONY
OF MARIA FISCHER
ON BEHALF OF GREEN MOUNTAIN POWER**

January 16, 2026

Summary of Testimony

Ms. Fischer presents GMP's power supply costs during the Rate Year, Fiscal Year 2027, and describes GMP's power supply portfolio and the primary drivers of recent changes in power supply and transmission costs. Ms. Fischer also explains how GMP developed power supply cost forecasts for the following three years of the Proposed Plan.

Exhibit List

Exhibit GMP-MF-1	Power Supply Cost Summary - Test Year
Exhibit GMP-MF-2	Power Supply Cost Summary - Rate Year
Exhibit GMP-MF-3	Test Year Power Supply Costs and Revenues – Monthly Summary
Exhibit GMP-MF-4	Test Year Power Supply Costs – Purchased Power Energy
Exhibit GMP-MF-5	Test Year Power Supply Costs – Purchased Power Capacity
Exhibit GMP-MF-6	Test Year Power Supply Costs – Owned Generation O&M
Exhibit GMP-MF-7	Test Year Power Supply Costs – Generation Fuel
Exhibit GMP-MF-8	Test Year Power Supply Costs – Purchased Transmission
Exhibit GMP-MF-9	Test Year Power Supply Costs – Power Supply Resales
Exhibit GMP-MF-10	Rate Year Retail Sales and Load at System Boundary
Exhibit GMP-MF-11	Rate Year Ancillary Product Costs and Credits
Exhibit GMP-MF-12	Rate Year Forward Energy Prices
Exhibit GMP-MF-13	Rate Year Congestion & Losses
Exhibit GMP-MF-14	Rate Year Generation Entitlements
Exhibit GMP-MF-15	Rate Year Power Supply Reconciliation
Exhibit GMP-MF-16	Rate Year Generation O&M and Fuel
Exhibit GMP-MF-17	Rate Year Power Contracts
Exhibit GMP-MF-18	Rate Year Net REC Revenue and RES Expense
Exhibit GMP-MF-19	Rate Year Purchased Transmission
Exhibit GMP-MF-20	Power Cost Comparison – Power Cost Summary
Exhibit GMP-MF-21	Power Cost Comparison – Energy MWh and Cost
Exhibit GMP-MF-22	Power Cost Comparison – Purchased Transmission
Exhibit GMP-MF-23	Power Supply Cost Forecast Summary – FY28–30

TABLE OF CONTENTS

I.	Introduction	4
II.	Overview of This Rate Filing and GMP's Power Portfolio	6
	Test Year Power Supply Cost Information.....	10
	Rate Year Power Supply Cost Information	10
	Rate Year and Test Year Power Cost Comparisons	10
	FY28–FY30 Power Cost Forecast	11
III.	Rate Year Power Supply Costs	19
	<i>Forward Energy Prices</i>	19
	<i>HQUS PPA</i>	21
	<i>Inflation</i>	22
	<i>DASI Expense</i>	22
	<i>Net-Metering</i>	25
	<i>Other Renewable Power Sources</i>	27
	<i>REC Revenues and RES Compliance Costs</i>	30
	<i>Energy Market Purchases</i>	34
	<i>Forward Capacity Market Costs</i>	34
	<i>Ancillary Services, Congestion, and Losses</i>	36
IV.	Transmission Costs.....	37
V.	Fiscal Year 2028–30 Power Supply and Revenue Forecasts	40

**PREFILED DIRECT & SUPPLEMENTAL TESTIMONY
OF MARIA FISCHER
ON BEHALF OF GREEN MOUNTAIN POWER**

I. Introduction

1 **Q1. Please state your name and occupation.**

2 A1. My name is Maria Fischer. I am the Lead Power Supply Analyst for Green Mountain
3 Power (“GMP”).

4 **Q2. Please summarize your educational background and pertinent professional
5 experience.**

6 A2. I have worked for over 16 years in the electric industry, focusing on power supply
7 portfolio planning, wholesale and retail power transactions, and Renewable Energy
8 Credit (“REC”) trading. I hold a Bachelor of Arts degree with majors in Mathematics
9 and Economics from Lafayette College.

10 Starting in 2008 I worked in the power supply departments at Green Mountain
11 Power for seven years and then at Vermont Public Power Supply Authority (“VPPSA”)
12 for three years as an Analyst and Trader for energy, capacity, and RECs. In 2018, I
13 joined the Vermont Department of Public Service (the “Department” or “DPS”) as a
14 Utilities Economic Analyst. Working within the Department’s Planning and Energy
15 Resources Division, I supported the development of state energy policy and
16 implementation of the Renewable Energy Standard (“RES”), reviewed rate cases, and
17 evaluated utility integrated resource planning for electric and natural gas utilities, among
18 other responsibilities.

1 I rejoined GMP in May 2021, and my current role is Leader of Power Supply
2 Operations. In this capacity, I am responsible for forecasting, tracking, and reporting
3 GMP's power costs. I also helped develop GMP's 2024 Integrated Resource Plan
4 ("IRP").

5 **Q3. Have you previously testified before the Public Utility Commission ("Commission"
6 or "PUC")?**

7 A3. Yes, I have testified before the Public Utility Commission on numerous occasions, on
8 topics that include resource planning, rate case review, and energy efficiency utility
9 efficiency screening. Most relevant to this proceeding, I provided testimony on behalf of
10 GMP in Case No. 22-0175-TF, GMP's Fiscal Year 2023 Rate Case; in Case No. 23-
11 0141-PET, where I presented modifications to GMP's 2023 Multi-Year Regulation
12 Plan's (the "Current Plan") power supply and storm adjuster mechanisms, and in Case
13 No. 25-1955-PET, which is the concurrent petition for approval of a new Multi-Year
14 Regulation Plan (the "Proposed Plan").

15 **Q4. What is the purpose of your testimony?**

16 A4. My testimony explains GMP's power supply, including the significant external cost
17 pressures from regional transmission and energy prices, the impact of inflation, and our
18 overall strategy to provide carbon-free power to customers at a low and stable cost.
19 Specifically, sections II-IV provide the details of GMP's power supply costs in the
20 context of the traditional rate case filing, with summaries for the upcoming Rate Year

1 (Fiscal Year 2027, or “FY27,” beginning in October 2026) and explaining how these
2 costs were developed in response to many upward cost drivers.

3 I also present in Section V, GMP’s forecasts for power supply and revenue
4 expected for the fiscal years of 2028–2030 (“FY28–30”), as supplemental testimony in
5 GMP’s concurrent proceeding to review the Proposed Plan (Case No. 25-1955-PET).

II. Overview of This Rate Filing and GMP’s Power Portfolio

6 **Q5. Can you please quantify GMP’s Rate Year power costs relative to the Test Year at a
7 high level?**

8 A5. For the Rate Year, total power supply-related costs, which include purchased
9 transmission, are \$519.1M, an increase of about \$11.9M from the Test Year (FY25), and
10 \$10.9M higher than the Interim Year, FY26.

11 **Q6. What are the key changes in GMP’s net power costs for the Rate Year, relative to
12 the Test Year?**

13 A6. My prefiled direct testimony submitted in the Proposed Plan proceeding summarized the
14 overall trends driving power supply costs leading into, and during the Proposed Plan
15 period. Many of these power cost changes reflect regional and national pressures and fall
16 outside of GMP’s direct control. The key changes in GMP’s net power costs between the
17 Test Year and the Rate Year include:

18 • Transmission expenses associated with the regional grid represent the largest cost
19 driver and are expected to continue to increase. The two components with the

1 largest projected increases are Vermont Electric Power Company (“VELCO”)¹
2 Vermont Transmission Agreement (“‘91VTA”) charges and Regional Network
3 Service (“RNS”) charges under the ISO-NE OATT. As explained in the testimony
4 of Ms. Nelson, VELCO recovers most of its costs through ISO-NE OATT, with
5 the remaining costs recovered from Vermont distribution utilities through
6 ‘91VTA, of which GMP pays a share. The ‘91VTA cost increase reflected in
7 power supply costs is somewhat offset by an increase in equity in earnings. RNS
8 costs, charged by ISO-NE, are also expected to increase, though to a lesser extent,
9 reflecting higher RNS rates in the Rate Year despite lower forecasted peak loads.

10 • The implementation of ISO-New England’s (“ISO-NE”) Day-Ahead Ancillary
11 Services Initiative (“DASI”), replaced the ISO-NE forward reserves market and
12 has resulted in far higher costs than under the prior market design, with costs to
13 date significantly exceeding ISO-NE’s original expectations. As part of the
14 original market design, ISO-NE is required to conduct a comprehensive market
15 review at the one-year mark, which will be in spring of 2026. Based on feedback
16 received by ISO-NE from regional stakeholders, GMP anticipates some market
17 adjustments or other program revisions to address these adverse outcomes. Given
18 the uncertainty at this time regarding whether, when, and to what extent ISO-NE
19 may modify DASI, GMP has conservatively included \$6M of forecasted DASI
20 costs in the FY27 case.

¹ References to VELCO costs in this testimony also include costs associated with VELCO’s affiliate Vermont Transco, LLC which holds most bulk transmission assets in Vermont.

- Higher forward prices for electricity in New England, largely driven by elevated natural gas prices, sharply reduced imports from Quebec (and often exports to Quebec), and policy and supply upheaval related to the stoppage of offshore wind, among other factors. As a result, there are higher expected costs for projected ISO-NE spot market purchases, as well as increased power purchase agreement (“PPA”) prices for contracts with indexed pricing features tied to New England energy prices, such as the Hydro-Quebec U.S. (“HQUS”) PPA. Higher ancillary service costs, system losses, and congestion charges—each closely tied to ISO-NE Locational Marginal Prices (“LMPs”) are also going up, as they are impacted by the higher forward prices.
- Decreased REC revenues are expected due to increased retirement of credits to comply with updates to Vermont’s Renewable Energy Standard (“RES”). Additionally, small distributed generation (“DG”) projects that came online between January 1, 2010 and June 30, 2015, including many Standard Offer projects that had previously been sold into the Massachusetts Class I REC markets, now qualify for Vermont Tier II and therefore will no longer be sold. This change benefits our customers by helping us meet our Tier II RES requirements, while creating a reduction to REC sale revenues.
- Weather-related impacts, including changing precipitation and runoff patterns have impacted hydroelectric generation. In Summer 2025, Vermont experienced one of the worst droughts in history; August was the driest month in Vermont since records started in 1895. These historic conditions were present during much

1 of the Test Year resulting in lower-than-average generation. Consistent with prior
2 practice, FY27 forecasted generation is based on a 20-year average with
3 adjustments made for upgrades as well as applicable regulatory requirements that
4 may reduce output.

5 • Various expirations and starts of new contracts, including for example, deliveries
6 of energy from our long-term PPA from Great River Hydro's Connecticut River
7 and Deerfield River plants will continue to ramp up during the Rate Year. We
8 also have several new renewable PPAs that are expected to begin delivering
9 energy and RECs during the Rate Year, including Twin Wind and some Vermont
10 solar projects selected through our Summer 2025 renewable Request for
11 Proposals ("RFP").

12 • The GlobalFoundries ("GF") transition period ends at the start of the new Rate
13 Year, at which time GF will no longer be served by GMP. During the Test Year,
14 GF was its own transmission customer but remained a GMP retail customer for
15 energy, capacity, and other services. Beginning in the Rate Year, GMP's load will
16 no longer include GF, resulting in a reduction in our overall load obligation, and
17 accordingly, our allocations of Standard Offer and Ryegate resources, which are
18 based on shares of retail sales, will decline. GMP's Capacity Load Obligation
19 ("CLO") in the ISO New England Forward Capacity Market ("FCM") will also
20 decrease, as will other ISO New England charges assessed on a load basis.

21 • Three joint-venture solar and battery projects—Milton, Ferrisburgh, and Essex—
22 that have been treated as PPAs to date will now transition to wholly-owned

1 projects at the start of the Rate Year. This change creates benefits, reducing
2 purchased power costs.

3 **Q7. Please introduce your exhibits.**

4 A7. I sponsor the following exhibits, organized by the categories below:

5 Test Year Power Supply Cost Information

6

- 7 • **Exh. GMP-MF-1** contains an annual summary of all costs and credits, for FY25.
- 8 • **Exh. GMP-MF-3** contains a higher-level monthly summary, for FY25.
- 9 • **Exh. GMP-MF-4** through **Exh. GMP-MF-9** contain monthly detailed information for all power supply-related categories, for FY25.

10 Rate Year Power Supply Cost Information

11

- 12 • **Exh. GMP-MF-2** contains the annual summary of all power-supply-related cost information, for FY27.
- 13 • **Exh. GMP-MF-10** contains monthly Rate Year sales and related loads, for FY27.
- 14 • **Exh. GMP-MF-11** contains forward energy market prices, for FY27.
- 15 • **Exh. GMP-MF-12** through **Exh. GMP-MF-19** contain monthly detailed projections of costs and volumes for all power supply-related categories, for FY27.

16 Rate Year and Test Year Power Cost Comparisons

17

- 18 • **Exh. GMP-MF-21** compares Rate Year and Test Year energy volumes and costs.
- 19 • **Exh. GMP-MF-22** compares Rate Year and Test Year purchased transmission costs.

1 FY28–FY30 Power Cost Forecast

2 • **Exh. GMP-MF-23** contains forecasted power costs for FY28–30.

3 **Q8. Please provide an overview of GMP's power supply portfolio.**

4 A8. GMP serves an annual retail load, including distribution system losses, of approximately
5 4 million MWh/year. Providing that power to customers safely, reliably, and cost
6 effectively is our priority. We procure this energy, and other required products including
7 capacity, RECs, and ancillary services from a variety of sources including owned and
8 purchased physical energy from specific generating plants, system energy market
9 purchases, and other purchase agreements ranging from short-term agreements of a few
10 months to long-term contracts of up to 30 years.

11 **Q9. Please describe GMP's owned resources.**

12 A9. GMP owns, either solely or jointly with others, approximately 371 MW of generating
13 capacity that is expected to provide approximately 835,000 MWh, or just over 20% of
14 GMP's needs in the Rate Year. This is primarily intermittent renewable energy from
15 several dozen hydro facilities, GMP's two wind projects, Kingdom Community Wind
16 and Searsburg, and several solar projects. GMP also owns a share of about 20 MW in the
17 Millstone 3 nuclear plant that is expected to produce about 145,000 MWh of baseload
18 generation. GMP anticipates that the dispatchable wood-fired JC McNeil biomass plant
19 in Burlington, operating at roughly a 44% capacity factor, will provide GMP with about
20 62,000 MWh of energy, capacity, and Maine Class IA RECs. Finally, GMP owns several
21 combustion turbine and diesel units, along with joint ownership shares in the Wyman 4

1 oil-fired steam unit in Yarmouth, Maine, and the three Stony Brook intermediate dual
2 fuel combined cycle units in Massachusetts. These units account for about 150 MW of
3 peaking capacity, which provides value in the capacity, DASI and other markets, and
4 provide a minimal amount of energy. They are projected to generate about 9,000 MWh of
5 energy in the Rate Year.

6 **Q10. What are GMP's most significant power supply purchases?**

7 A10. GMP purchases power from a variety of sources and generation types in-state and
8 regionally. GMP's HQUS energy contract will provide about 1.05 million MWh of
9 energy in the Rate Year along with renewable attributes associated with the Hydro-
10 Quebec generation system. The energy from HQUS makes up about a quarter of GMP's
11 energy need for the Rate Year. At least 99%² of this energy is from hydroelectric sources
12 and will contribute to meeting our RES Tier I requirement.

13 The other major resources that GMP purchases power from on a long-term basis
14 include Great River Hydro's fleet of 13 hydroelectric facilities along the Connecticut and
15 Deerfield Rivers, NextEra's Seabrook nuclear plant, the Granite Reliable Wind project,
16 the Deerfield wind project,³ the Ryegate wood-fired plant, Twin Wind and the Sheldon
17 Springs hydro facility. Each of these sources feature zero air emissions or are relatively
18 low-emitting generators. Great River, Granite, Deerfield, Ryegate, and Twin Wind all

² Environmental Attributes delivered have historically been more than 99% renewable, exceeding the contractual requirement that the generation mix be comprised of no less than 90% hydroelectricity.

³ As described in Mr. Castonguay's prefiled direct testimony supporting the Proposed Plan filing, GMP's receives 100% of the offtake of the Deerfield wind project under a 10-year PPA. That PPA contains an option for GMP to purchase the project during 2027. We are currently analyzing whether a purchase or renewed PPA is in the best interest of customers.

1 provide RECs that help us meet our RES requirements or be sold as premium RECs in
2 one or more neighboring states, with the REC revenues all going to reduce costs for our
3 customers. In total, these renewable and nuclear PPA sources are projected to supply
4 almost 1.2 million MWhs of energy in the Rate Year, or about 30% of GMP's needs to
5 serve customers.

6 During the Rate Year, GMP will also purchase over 405,000 MWh under short
7 term, market-based forward energy contracts that GMP has executed in recent years, as
8 well as 58,000 MWh through a short-term off-peak hydro purchase from First Light.
9 These fixed price bilateral purchases provide stability as they are shaped on a monthly
10 basis and by on- and off-peak periods to match GMP's forecasted net short position,
11 helping limit the potential year-to-year and intra-year variances in power costs and retail
12 rates driven by energy market price changes.

13 **Q11. What are the other components of GMP's power supply portfolio?**

14 A11. The rest of GMP's retail load is served through smaller bilateral purchases, spot market
15 purchases, and Vermont programs for net-metering, Standard Offer, and other small
16 renewables.

17 Standard Offer contracts and net-metering projects are forecasted to provide
18 approximately 480,000 MWh of energy, about 12% of the retail load in the Rate Year.
19 Many of the Standard Offer sources and new net-metered ("NM 2.0+") projects also
20 provide high-value Vermont Tier II RECs that can be used for Tier II compliance to
21 benefit our customers. As new net-metering and Standard Offer projects continue to

1 come online, these sources will contribute an increasing share of our power supply
2 portfolio in the Rate Year.

3 GMP makes bilateral purchases for energy and/or RECs from several other small
4 renewable projects, mostly hydro and solar. We currently have PPAs with numerous
5 small solar projects throughout Vermont, with over 50 MWs of installed capacity. During
6 the Rate Year, we anticipate that an additional 10 MWs of projects will achieve
7 commercial operation, including projects resulting from our Summer 2025 RFP for
8 renewable energy to support our Tier II obligations.

9 Energy storage continues to be a growing and important part of GMP's portfolio,
10 with 110 MWs of installed capacity expected by the end of the Rate Year in both
11 residential and grid-scale energy storage systems. These storage projects provide
12 customer value beyond resiliency through outages and other grid events, helping GMP
13 manage monthly peak loads and reduce ISO-NE transmission charges that are allocated
14 based on monthly peak loads.

15 GMP purchases and sells energy on an hourly basis through the ISO-NE day-
16 ahead and real-time markets (together, the “spot market”) as needed to balance load and
17 resources. While GMP plans its long- and short-term energy supplies to align with
18 forecasted load requirements during peak and off-peak periods each month, actual
19 customer demand and the output of intermittent generating sources can fluctuate
20 meaningfully within a given month, resulting in spot market transactions that can be
21 significant. Energy market volatility is generally highest in the winter months, due to
22 weather-driven customer demand for both electricity and natural gas, and intermittent

1 generation. For the Rate Year as a whole, GMP's loads and resources are projected to be
2 closely balanced, with GMP projected to be a net seller of about 120,000 MWh (about
3 3% of GMP's Rate Year requirements) in the spot market, primarily in the on-peak hours
4 of spring months.

5 **Q12. Please summarize how GMP approached the development of power supply costs for
6 the Rate Year.**

7 A12. Most of the volumes and prices that determine GMP's Rate Year projected net power
8 supply costs are based on values from the Test Year, adjusted to reflect known and
9 measurable changes. These changes include market price conditions for electricity, fuel,
10 and RECs, contractual changes in PPA prices or volumes, and the addition and expiration
11 of certain power sources. As discussed below and in the direct testimony of Laura Doane
12 and Rob Bingel, Rate Year load and sales are based on third-party forecasts for that
13 period. Normalizing adjustments were applied to intermittent power sources for which
14 production tends to fluctuate around long-term average weather values. The most
15 prominent categories of adjustments are as follows:

16 • Market purchases and sales were adjusted to reflect changes in GMP's forecasted
17 load requirements and the forecasted output of power sources that supply GMP,
18 along with changes in the wholesale market price outlook for energy, capacity,
19 fuel, and RECs.

20 • Purchased power expenses were adjusted to reflect the expiration of existing
21 PPAs and the addition of new sources (e.g., new Standard Offer projects, Twin

1 Wind, Vermont solar PPAs, system purchases and sales, and GMP Microgrid

2 Solar projects transferring to wholly owned facilities during the Rate Year).

- 3 • Purchased power expenses were adjusted to reflect contractual price changes in
4 existing PPAs (e.g., for HQUS energy, NextEra Seabrook, Granite Reliable Wind,
5 Great River Hydro), volume changes for some sources, and weather normalization
6 for intermittent sources.
- 7 • Transmission expenses were adjusted to reflect VELCO and ISO-NE projections
8 for regional transmission rates, along with the estimated monthly peak loads upon
9 which these expenses are allocated.
- 10 • Capacity-related expenses were adjusted to reflect known changes in ISO-NE
11 FCM pricing, changes to contracted capacity supply volumes, and updates to
12 GMP's projected share of regional capacity obligations. These updates
13 incorporate the transition of GF to covering its own capacity obligation beginning
14 at the start of the Rate Year.
- 15 • Forward reserve expenses were adjusted to account for ISO-NE's implementation
16 of the DASI Market based on actual incurred costs, which have been much higher
17 than originally forecasted by ISO-NE (for GMP and other market purchasers) and
18 potential market changes. As described further below, GMP has reflected \$6M of
19 DASI costs in the Rate Year.
- 20 • Energy output from intermittent renewable sources was adjusted to reflect
21 normalized or long-term average volumes and planned outages for maintenance
22 and upgrades.

- Fuel prices at GMP's owned and jointly owned fossil-fired units were adjusted on a plant-specific basis based on recent future market prices for oil and natural gas.
- REC quantities were revised to reflect long-term average generation from GMP-owned resources and PPAs. Net REC revenues were updated to incorporate forward sales executed for delivery during the Rate Year and revised market price assumptions for projected REC volumes not yet sold. Resource eligibility classifications were also updated to align with current state criteria (e.g., Standard Offer projects reclassified from Vermont Tier I to Vermont Tier II).
- RES costs were updated to reflect the expected compliance cost of RES Tiers I, II, III, and now Tier IV during the Rate Year.
- Operating & Maintenance (“O&M”) expenses for GMP’s wholly owned generating units were adjusted to reflect the most recent forecasts of those expenses, as discussed in Mr. Castonguay’s testimony; O&M expenses for jointly owned plants reflect five-year averages

Many of these changes are discussed in more detail in Section III of my testimony.

Q13. What volume of retail load is reflected in the GMP Rate Year power costs that you are presenting?

A13. The power costs for the Rate Year reflect a total load requirement of about 4 million MWh. That is the forecasted GMP retail sales volume for the year, as developed by the consulting firm, Itron, plus energy losses on the distribution and sub-transmission system.

1 Ms. Doane and Mr. Bingel introduce and discuss the Itron forecast in their joint
2 testimony.

3 **Q14. How are GMP's Rate Year power supply costs represented in GMP's cost of service
4 filing?**

5 A14. Overall, projected total power-supply-related costs increased \$11.9M from the Test Year
6 to the Rate Year. The changes are reflected in **Exh. GMP-LD-RB-3** as the following
7 Cost of Service ("COS") Adjustments:

COS Adjustment	Amount
COS Adjustment 1: Purchased Power. This adjustment includes all purchased power costs, including net-metering, and all resales of power, including REC revenues and reflects reduced GF load obligation.	\$5.317M decrease
COS Adjustment 2a: Production Fuel costs	\$0.496M decrease
COS Adjustment 2b: Joint Ownership costs (O&M)	\$0.366M increase
COS Adjustment 2c: GMP Owned Production (O&M) costs	\$1.190M increase
COS Adjustment 3: Transmission by Others ("TbyO")	\$19.205M increase
COS Adjustment 4: Other Transmission-related costs	\$1.398M increase

8
9 Additionally, the Test Year COS for power supply included the MYRP smoothing
10 deferral of \$4.5M, which is not applicable in the Rate Year. These changes are discussed
11 in greater detail in the following sections of my testimony, except for wholly- and joint-
12 owned O&M costs, which are addressed by Mr. Castonguay.

III. Rate Year Power Supply Costs

1 **Q15. What is the purpose of this section of your testimony?**

2 A15. I explain in detail the changes in GMP's net power costs from the Test Year to the Rate
3 Year. Some of these changes affect several power cost components, so I will generally
4 explain these linked updates together.

5 *Forward Energy Prices*

6 **Q16. Please describe the drivers of current trends in forward prices for around-the-clock
7 energy in New England.**

8 A16. Inflation, lack of new generation plants like once expected offshore wind, and national
9 events continue to create volatile energy markets. Current forward prices for around-the-
10 clock ("ATC") energy in New England reflect higher expected costs and increased risk in
11 serving load across all hours, particularly during winter months and evening periods
12 when solar generation is unavailable. The primary driver of LMPs in the region remains
13 natural gas forward prices, as gas-fired generation sets the marginal price in many hours.
14 Forward markets reflect persistent regional pipeline constraints, heightened winter fuel
15 price volatility, and increased liquefied natural gas ("LNG") exports that have reduced
16 the availability of domestic supply. Forward prices also incorporate greater uncertainty
17 related to weather and load, influenced by recent cold winters, extreme heat events, and
18 growing electric demand.

19 Higher forward prices are further supported by uncertainty around the timing and
20 scale of new supply, particularly offshore wind, which has experienced project delays and
21 cancellations. Regional imports—especially from Hydro-Québec—have also declined

1 significantly in recent months due to extreme drought conditions, increased winter
2 demand in Québec, and concerns about electric system adequacy. DASI market high-cost
3 impacts and uncertainty, higher emissions compliance costs under the Regional
4 Greenhouse Gas Initiative, together with ongoing market design and capacity reforms,
5 add additional risk premiums. Collectively, these factors have led market participants to
6 price higher expected costs and greater uncertainty into forward ATC energy products in
7 New England.

8 Relative to the Test Year, the annual average ATC price for the Rate Year is
9 approximately 9 percent higher. However, monthly on-peak and off-peak prices vary
10 more significantly. The largest increases relative to Test Year prices occur in November
11 off-peak periods when Rate Year forwards are 65 percent higher than Test Year actual
12 prices, while February off-peak forward prices for the Rate Year are approximately 20
13 percent lower than actual Test Year prices.

14 **Q17. How are forward energy prices reflected in the Rate Year power costs?**

15 A17. As previously explained, GMP makes forward energy sales and purchases to seasonally
16 balance supply and demand, typically buying additional supply in winter months and
17 selling excess supply in spring and summer. GMP also purchases and sells energy on an
18 hourly basis in the ISO-NE day-ahead and real-time markets. To estimate the expense
19 and revenue resulting from GMP's open energy positions, we apply forward price
20 quotations that approximate fixed prices for future monthly deliveries. For Rate Year
21 power costs, GMP has used broker quotes from November 6, 2025. Higher forward

1 prices, particularly during peak winter months, typically result in higher costs for spot
2 market purchases, which are somewhat offset by higher revenues from spot market sales.

3 As noted previously, the HQUS PPA price also has a component tied to market
4 prices, both historical and forward. Congestion, losses, and other ISO-required ancillary
5 charges also tend to be closely linked to LMPs and are reflected in forecasted costs.

6 *HQUS PPA*

7 **Q18. How is the HQUS PPA reflected in GMP's Rate Year costs?**

8 A18. The HQUS PPA price is formula-based with components tied to inflation and historical
9 and forward energy prices. Each year, this price is adjusted based on a weighted average
10 of:

- 11 • The Reference Price, which is the first-year price escalated by the general level of
12 prices in the U.S. economy as determined by a lagging measure of the GNP-IPD
13 weighted at 60%.
- 14 • The Energy Market Price Index ("EMPI") reflecting an average of one-year historical
15 actual Highgate node pricing for the contract profile (7x16) and one-year forward on-
16 peak New England Hub traded energy prices, adjusted for the delivery point and
17 7x16 delivery profile, weighted at 40%
- 18 • Annual price changes are subject to a 15% annual upward or downward limit.

19 Applying current inflation, historical prices through September 2025, and on-peak
20 forward market prices results in a price of \$75.97/MWh for deliveries beginning
21 November 1, 2026. The current contract year, which runs through October 31, 2026 and
22 applies to one month of the Rate Year, is priced at \$73.89/MWh. The average contract

1 price during the Test Year was \$67.42/MWh, and the projected average price for the Rate
2 Year is \$75.79/MWh, resulting in an approximate \$8.8 million increase in HQUS PPA
3 expense relative to the Test Year. If inflation and energy prices moderate, then the HQUS
4 PPA price and year-over-year changes should also moderate.

5 *Inflation*

6 **Q19. How does inflation impact power supply costs for the Rate Year, and how is this
7 reflected in GMP's Rate Year power costs?**

8 A19. The impact of inflation on power supply costs during the Rate Year is primarily driven by
9 the application of inflation index values to some of GMP's largest supply contracts. Two
10 of GMP's long-term PPAs—HQUS and NextEra Seabrook—have prices that are adjusted
11 based on a national inflation index⁴ and adjusted annually. Inflation index values have
12 stabilized in recent years following the high inflation environment after the pandemic.
13 For the Rate Year and the remainder of the MYRP period, GMP projects inflation rates in
14 the low-to-mid 2 percent range.

15 *DASI Expense*

16 **Q20. Can you describe how the DASI market works and how it differs from the Forward
17 Reserves Market?**

18 A20. DASI was implemented on March 1, 2025, and replaced the former Forward Reserve
19 Market (“FRM”). It is designed to provide visibility and compensation to resources

⁴ The HQUS PPA utilizes the Gross National Product-Implicit Price Deflator index (“GNP-IPD”); the NextEra PPA utilizes the Gross Domestic Product-Implicit Price Deflator index.

1 fulfilling contingency reserve and reliability requirements. While the FRM was a forward
2 commitment mechanism that therefore allowed greater forecast certainty, DASI is an
3 hourly day-ahead market that is by its nature harder to forecast, particularly in these early
4 stages of operation. While DASI is designed to more accurately value resources capable
5 of providing flexibility and reliability and to better align market outcomes with system
6 needs, it remains unclear whether it is achieving these objectives in a cost-effective
7 manner. Although there is insufficient operational data at this time to fully assess DASI's
8 performance relative to ISO-NE's stated goals, it is clear that costs to date are
9 significantly higher than ISO-NE originally forecast, indicating that the market is not
10 operating as cost-effectively as anticipated.

11 **Q21. What have been the results of DASI since the market opened in March 2025?**

12 A21. In the December 2025 NEPOOL Participants Committee Report, it was reported that
13 average gross credits awarded through DASI were \$1.15M per day. On an annual basis,
14 this would translate to almost \$420M in credits awarded to generators in New England.
15 The market has not yet been in operation for a full year, and actual costs may exceed this
16 projection, particularly given that incremental DASI-related charges totaled nearly
17 \$260M regionwide for just the six-month period March 2025 through August 2025.⁵ For
18 context, prior to the implementation of DASI, ISO estimated the costs to be

⁵ The Internal Market Monitor noted that from the outset of the DASI in March 2025 through August 2025, approximately \$260M in incremental costs were created, nearly double the amount an earlier ISO-NE forecast had indicated. [Citation for first is Summer 2025 IMM report page 45 and second is an ISO NE model from 2021 for the DASI market]

1 approximately \$100M per year, as reported at the May 9, 2023, NEPOOL Markets
2 Committee meeting.

3 **Q22. What DASI-related costs has GMP incurred since the implementation of the**
4 **market, and how has GMP mitigated those costs?**

5 A22. DASI costs are allocated to all awarded real-time load. Through November 2025, GMP's
6 gross DASI charges totaled more than \$14 million. GMP has taken active steps to
7 mitigate these impacts by leveraging its own resources that are eligible for compensation
8 under DASI and by participating actively in the market as part of a broader cost-
9 mitigation strategy. Through this participation and asset optimization, GMP has offset a
10 portion of its gross charges, reducing net DASI costs to approximately \$10.1M through
11 November 2025. Despite these mitigation efforts, GMP's average monthly net DASI
12 costs have exceeded \$1.1M.

13 **Q23. What is being done to account for the uncertainty and rate impact created by this**
14 **new market, and how is GMP reflecting it in the FY27 case?**

15 A23. Since DASI's launch, ISO-NE has received feedback from many market participants and
16 consumer advocates regarding the untenable impact of these significantly higher costs
17 than originally anticipated. Upon completion of the first year of DASI operations, ISO-
18 NE will conduct a market review in spring 2026. GMP remains involved in the process
19 through various committees and regional stakeholder forums and will continue to share
20 our experience and data to help inform the review and reinforce the need for overall
21 market adjustments. That review will likely demonstrate that DASI costs have been

1 multiple times higher than initial projections. While no formal redesign has been
2 proposed to date, the required reporting mechanisms allow market participants and
3 consumer advocates to seek changes. ISO-NE has indicated that at least one year of data
4 is required prior to making modifications or suspending the initiative, and recent DASI
5 charges have not improved relative to pre-launch expectations.

6 Given this uncertainty, we have reflected \$500,000 per month, or \$6M annually in
7 our Rate Year forecast.⁶ It is not just and reasonable to charge customers upfront for the
8 full net costs experienced based upon the limited data thus far, especially given how
9 much higher those costs have been than the experts at ISO-NE had predicted. The \$6M
10 included in Rate Year costs is a material but conservative estimate and reflects a
11 reasonable expectation of future DASI costs as the market evolves.

12 Net-Metering

13 **Q24. What are the costs associated with net-metering?**

14 A24. The power supply costs associated with net-metering for the Rate Year are \$60.5M for
15 331,000 MWh of energy (about \$183/MWh), reflecting an increase of \$6.4M over the
16 Test Year for 22,000 MWh of additional energy in the Rate Year. This increase reflects
17 continued additions of net-metered generation combined with increasing rates due to a
18 higher blended residential rate.

⁶ The forecast applies this uniformly across the Rate Year. While DASI charges appear to increase during periods of higher LMPs, assumed flat monthly costs were applied due to the absence of winter operating experience under the program, which is expected to bring the highest costs. Consistent with Forward Reserve Market costs, DASI charges are included in Component A.

1 **Q25. Does this represent the full impact of net-metering costs on GMP's rates?**

2 A25. No. In addition to the power supply costs described above, net-metered generation that is
3 consumed by customers onsite reduces GMP's retail sales (kWh), which increases
4 GMP's rates for customers by spreading fixed costs over fewer kilowatt-hours. This
5 effect is incorporated in GMP's retail sales and revenue forecast.

6 **Q26. How does net-metering generally affect GMP's Rate Year power costs?**

7 A26. Net-metering affects GMP's Rate Year power costs by increasing purchased power
8 expenses for net-metered excess generation, reducing wholesale energy purchases during
9 periods of high solar output, and lowering retail sales. These impacts are designed to be
10 partially offset by the value of RECs transferred to GMP for RES compliance and by
11 limited capacity-related savings, all of which are reflected in the Rate Year power cost
12 forecast.

13 **Q27. Is net-metering capacity expected to continue to grow in the Rate Year?**

14 A27. Yes, but new additions are expected to be lower than in prior years due to the expiration
15 of the federal Investment Tax Credit ("ITC"), reduced net-metering adjustors, and net-
16 metering rule changes, particularly for larger group net-metering projects.

17 **Q28. How much net-metering capacity is included in Rate Year costs?**

18 A28. The Rate Year forecast is based on existing installed projects, projects currently in the
19 interconnection queue, and modest new applications consistent with recent trends. Net-
20 metering projects are categorized by program (e.g. NM 1.0, NM 2.0, NM 2.1, etc.) based
21 on their application date and costs estimated based on the program's compensation rates

1 and applicable adjustors. As of August 2025, there were about 312 MW⁷ of solar net-
2 metered projects online in GMP's territory, and an additional 19 MW that have submitted
3 applications but are not yet built. The table below shows a summary of the project
4 applications and installations by program at the end of 2025.

PROGRAM	NM 1.0	NM 2.0	NM 2.1	NM 2.2	NM 2.3	NM 2.4	NM 2.5	NM 2.6	TOTAL
Active	141	48	25	37	18	18	22	4	312
Proposed	0	0	0	2	2	1	11	4	19
Total	141	48	25	38	19	19	33	8	331

5
6 During the Rate Year, GMP assumes that 10 MW of net-metered capacity will be
7 installed, resulting in 334 MW of solar net-metering to be online in our territory by the
8 end of the Rate Year.

9 Other Renewable Power Sources

10 **Q29. Do the changes in GMP's power supply mix in the Rate Year include any increases
11 in supply from renewable sources?**

12 A29. Yes. GMP's power supply strategy continues to focus on achieving a low-cost, low-
13 carbon, and reliable portfolio and has included additions of renewable resources in recent
14 years. Since 2020, GMP has maintained a carbon-free energy portfolio, and expects to
15 continue doing so on an annual basis. Vermont's current RES requires that GMP be
16 100% renewable by 2030.

⁷ At the end of 2025, there was 317 MW of installed net-metering capacity made up of 312 MW of solar and 5 MW of non-solar projects.

1 Notable changes in the Rate Year power supply include anticipated increases in
2 production from net-metering and Standard Offer programs, increasing volumes from the
3 Great River Hydro PPA, the start of Twin Wind PPA, and the conversion of three joint
4 venture solar and storage projects from PPAs to wholly-owned generators. Many of the
5 other changes in GMP's power supply mix are associated with shorter-term transactions
6 that GMP uses to manage the size and cost of its open position, while also managing
7 GMP's power costs and thereby the retail rates that our customers pay.

8 **Q30. Are GMP's purchases under Standard Offer reflected in the Rate Year power
9 costs?**

10 A30. Yes. All projects that are currently online as part of Standard Offer are included in the
11 Rate Year power costs at the contracted prices. Additionally, GMP has worked with the
12 administrator VEPP Inc. to identify projects that have been awarded Standard Offer
13 contracts and are likely to be online during the Rate Year. These projects are also
14 reflected in GMP's Rate Year power costs. Standard Offer costs included in the Rate
15 Year are \$20.2M, compared to the \$18.1M that was included in the Test Year. Contract
16 prices continue to trend downward, with some of the most recent solar projects achieving
17 commercial operation priced as low as \$82/MWh.

18 Standard offer generation and associated costs are allocated to Vermont utilities
19 based on their share of statewide retail sales, with some utilities receiving an exemption.
20 Historically, GMP's allocation was approximately 82 percent of Standard Offer projects.
21 Beginning at the start of the Rate Year, GF will be allocated its own share of Standard
22 Offer projects, reducing GMP's share by approximately 6 percent, to about 76 percent.

1 **Q31. What are the changes to Great River Hydro in the Rate Year?**

2 A31. The Great River Hydro PPA continues to ramp up as contracted in both delivered
3 volumes and price during the Rate Year. GMP expects to receive approximately 279,000
4 MWh of peaking energy under the contract in the Rate Year, compared to 183,000 MWh
5 delivered in the Test Year. As a result of the increased volumes and pricing structure,
6 Rate Year costs for the Great River Hydro PPA are forecast to be approximately \$4.9
7 million more than Test Year costs with a corresponding reduction in our ISO purchase
8 need.

9 **Q32. Please describe the Twin Wind PPA and the expected generation.**

10 A32. Twin Wind is an 18 MW proposed wind project in Rumford, Maine from which GMP
11 has a PPA to purchase the unit-contingent energy and RECs. GMP expects to begin
12 receiving energy and the associated RECs, which will qualify for Vermont Tier IV at the
13 start of calendar year 2027. The project is forecast to generate approximately 42,000
14 MWh of energy in the Rate Year.

15 **Q33. How are GMP Joint Venture Solar and Storage entities included in the Rate Year
16 power costs?**

17 A33. As detailed in Ms. Doane and Mr. Bingel's testimony, on October 1, 2027, the three
18 GMP joint venture solar and storage projects—Milton, Ferrisburgh, and Essex—will
19 become wholly owned by GMP. The Test Year included \$3.2M in PPA costs as well as
20 \$30/MWh REC expenses from these projects. With the transition to GMP ownership,
21 there will be no PPA costs or REC expenses associated with the 24,000 MWhs of

1 expected annual generation from these projects beginning in the Rate Year. Additional
2 costs are included elsewhere in the Cost of Service.

3 *REC Revenues and RES Compliance Costs*

4 **Q34. Please describe how GMP participates in REC markets.**

5 A34. GMP's supply portfolio produces significant volumes of RECs from wind, solar,
6 hydroelectric, and biomass sources, many of which qualify as Class I or Class II
7 resources for RPSs in neighboring states. These RECs are tracked in the NEPOOL
8 Generation Information System ("GIS," or "NEPOOL GIS"), the platform used to track
9 environmental attributes for each MWh of generation delivered in ISO-NE. Each
10 environmental attribute describes the fuel type, emission rate, renewable program
11 eligibility, and other attributes.

12 GMP participates in REC markets as both a buyer and as a seller. GMP acquires
13 and retires RECs to comply with Vermont's RES, including with the Tier I, Tier II, and
14 Tier IV, as updated by Act 179 of 2024. GMP retires RECs from both owned and
15 purchased resources for compliance. The costs of retired RECs are represented as a
16 power supply expense in RES compliance costs.

17 GMP also sells RECs that are not needed for Vermont RES compliance. Most
18 REC sales are associated with renewable generators whose RECs are not used for our
19 RES compliance because they have greater value in other markets. These mostly include
20 projects that were developed during the past decade and are eligible as Class 1 RECs in
21 neighboring states but were only eligible for Tier I in Vermont.

1 Updates to Vermont's RES shifted the online eligibility date from July 1, 2015, to
2 January 1, 2010, for Tier II eligibility, and introduced Tier IV, requiring the retirement of
3 RECs from regional new renewables in 2027. As a result, several projects that were
4 historically sold as premium RECs in neighboring states will instead be retired for Tier II
5 or Tier IV RES compliance, reducing REC revenues. When GMP sells RECs, the
6 resulting revenue is used to reduce GMP's net power costs and retail rates which directly
7 benefits customers, and the associated generation is not counted as renewable energy
8 delivered to our customers.

9 **Q35. What are the Vermont RES requirements that apply during the Rate Year and how
10 does GMP retire RECs to meet these requirements?**

11 A35. Vermont's RES was changed by Act 179 of 2024, effective for the calendar year 2025
12 (nine months of the Test Year). Under the updates, RES compliance requirements for
13 calendar year 2027 are 63%, 9.8%, 8.66%, and 4% of annual load for Tiers I through IV,
14 respectively. GMP works to meet the RES requirements in the most cost-effective way
15 for customers by continuing to procure renewable power and achieve Tier III savings at
16 the lowest cost. The net power costs for the Rate Year include the cost of RES
17 compliance for 2026 and 2027.

18 As mentioned, beginning at the start of the Rate Year, GF will no longer be
19 included in GMP's load, thereby reducing the total load for which GMP must
20 demonstrate RES compliance. While overall load decreases from the Test Year to the
21 Rate Year, the increasing RES compliance percentages result in a net increase in
22 compliance-related costs.

1 During the Test Year, GMP sold most high-value RECs, except for those required
2 to meet GMP's obligations under Tier II of Vermont's RES program, and those needed to
3 cover volumes subscribed to under GMP's voluntary retail green power programs. GMP
4 also retired Tier I-eligible RECs to comply with Tier I requirements. In the Rate Year,
5 GMP anticipates retiring a greater volume of RECs to meet the increased RES
6 requirements taking effect, while continuing to pursue a similar strategy of monetizing
7 RECs not required for compliance in order to minimize overall power costs for
8 customers. Rate Year REC revenues and RES compliance costs have been adjusted to
9 reflect the updated load forecast excluding GF, as well as the increased level of REC
10 retirements required for compliance.

11 **Q36. Can you summarize how and when GMP conducts its REC sales?**

12 A36. GMP has sold a portion of the projected Rate Year supply of high-value RECs on a
13 forward basis, under contracts that were negotiated from a few months to several years in
14 advance of delivery. These transactions are mostly fixed-volume, fixed-price contracts
15 that reflect the regional market for Class 1 RPS supply at the time they are negotiated.
16 This strategy stabilizes net power costs and mitigates customer exposure to potential
17 declines in regional REC market prices. We have assumed that the remainder of the REC
18 supply will ultimately be sold at prices that reflect recent broker quotes. In total, we
19 project that GMP's Rate Year premium REC sales will amount to approximately 815,000
20 RECs, at an average sale price around \$35/REC, for gross revenue of almost \$32M to
21 reduce overall rates.

1 **Q37. Please explain how REC sales are accounted for.**

2 A37. GMP first recognizes REC revenues net of the portion of PPA prices that GMP accrues
3 for the cost of RECs produced by most renewable PPA sources (e.g., Granite Reliable
4 Wind, Deerfield Wind, etc.) and any associated REC sale transaction costs such as broker
5 fees. Second, the creation and delivery of RECs in the NEPOOL GIS, and the revenue
6 that GMP receives from REC sales in that quarter, are conducted on a quarterly basis that
7 lags production of the associated energy by approximately six months. Consistent with
8 this lag, estimated REC revenues for the Rate Year are based on renewable energy
9 production from the applicable sources during the 12-month period from April 2026
10 through March 2027.

11 **Q38. What are the estimated net REC revenues for the Rate Year?**

12 A38. **Exh. GMP-MF-18** presents the Rate Year figures by month, broken out by major
13 components. After incorporating the REC purchase portion of PPA expenses that are
14 noted above, the resulting net REC revenue is about \$14.2M for the Rate Year, a decrease
15 of \$0.8M over the Test Year. While GMP continues to increase its renewable energy
16 procurements, REC sales have declined because a greater share of RECs are retired to
17 meet the current state RES compliance obligations and to support progress toward the
18 100 percent renewable requirement by 2030. This reduction is partially offset by hydro
19 upgrades that have resulted in additional GMP-owned facilities receiving Low-Impact
20 Hydro Institute (“LIHI”) certification, allowing those RECs to qualify in higher value
21 markets. Many of the RECs to be delivered during the Rate Year are subject to prices

1 established through prior forward sales, providing cost stability and corresponding
2 benefits to customers.

3 *Energy Market Purchases*

4 **Q39. Have you made any Rate Year adjustments to GMP's net energy market purchases
5 and sales? If so, why?**

6 A39. Yes. Net bilateral energy market purchases of fixed-price purchases for terms of less
7 than five years decline by about 362,000 MWh from the Test Year to the Rate Year, as
8 some existing purchases expired. A primary reason for the trend of declining bilateral
9 market purchases is that increasing amounts of GMP's energy needs are being met with
10 renewable sources. The nominal decrease in costs resulting from changes in these
11 purchases is about \$23.4M; the average price of the purchases remains relatively flat,
12 increasing from about \$65.87/MWh in the Test Year to about \$66.89/MWh in the Rate
13 Year.

14 *Forward Capacity Market Costs*

15 **Q40. Please explain how the FCM works and GMP's capacity obligation in that market.**

16 A40. The FCM is the market-based mechanism by which ISO-NE ensures that sufficient
17 capacity resources are in place to meet the future demand for electricity. Under the
18 current market structure, annual Forward Capacity Auctions ("FCAs") are conducted for
19 the delivery of capacity three years in advance of the capacity period, which runs for the
20 12-month period from June through May. Resources participate in the auction to acquire
21 a commitment to supply capacity and are compensated at a market-priced payment rate.

1 Capacity market prices are driven by the supply of and demand for capacity resources,
2 and the prices at which participants are willing to commit to supply capacity.

3 Load-serving entities, like GMP, are responsible for a share of the capacity that
4 ISO-NE purchases each year; these capacity requirements are allocated to load-serving
5 entities based on their respective contribution to the ISO-NE annual peak load. GMP
6 may meet that obligation using its owned or purchased capacity resources, or through
7 payments to ISO-NE. Beginning at the start of the Rate Year, GF will be responsible for
8 meeting its own capacity load obligation, thereby reducing GMP's overall capacity
9 requirement.

10 **Q41. What are the capacity costs for the Rate Year?**

11 A41. Capacity costs in the Rate Year are expected to be \$34.2M, a \$3.8M decrease from the
12 Test Year. This reduction is primarily driven by a lower capacity load obligation
13 resulting from the exclusion of GF from GMP's load and a lower system coincident peak
14 in summer 2025. That coincident peak establishes GMP's capacity obligation beginning
15 in June 2026, which applies to the first eight months of the Rate Year. In addition,
16 GMP's battery initiatives are expected to continue reducing capacity costs by lowering
17 GMP's contribution to the ISO-NE coincident peak load.

18 FCA 17, which applies to the Capacity Period from June 2026 through May 2027,
19 had a clearing price of \$2.59/kW-mo and applies to eight months of the Rate Year. The
20 remaining four months of the Rate Year fall within Capacity Period 18, which cleared at
21 \$3.58/kW-mo. During the Test Year, applicable Capacity Periods 15 and 16 had clearing
22 prices of \$2.477/kW-mo and \$2.531/kW-mo, respectively. The Test Year also included

1 bilateral capacity purchases that are replaced by ISO-NE purchases in the Rate Year, at a
2 lower cost in the first 8 months and at a higher cost in the final 4 months.

3 *Ancillary Services, Congestion, and Losses*

4 **Q42. Have you made any adjustments for ancillary service charges, congestion and losses
5 in the Rate Year?**

6 A42. Yes. The Rate Year forecast includes approximately \$12.4 million for ISO-NE ancillary
7 services, congestion, and losses, compared to about \$14.6 million in the Test Year. This
8 category includes the high net DASI costs, as discussed previously, as well as marginal
9 loss and congestion components associated with ISO-NE energy purchases and sales and
10 other ancillary services such as operating reserves, net commitment period compensation,
11 and regulation.

12 Net ancillary costs reflect ISO-NE charges net of revenues earned by GMP
13 resources. The Rate Year forecast includes \$6 million of DASI-related costs, while the
14 Test Year reflects only a partial year of DASI activity and includes \$2.2 million of costs
15 associated with the winter Inventoried Energy Program, which will not recur in the Rate
16 Year. Marginal losses and congestion are projected to increase modestly from
17 approximately \$5.3 million in the Test Year to \$5.5 million in the Rate Year, primarily
18 due to higher projected energy prices. Other ancillary service costs are based on Test
19 Year actuals and adjusted for projected Rate Year market conditions.

1 **Q43. Are there any other significant changes in energy costs you wish to highlight?**

2 A43. Yes. In the Rate Year, projected generation from GMP-owned hydro units is projected to
3 be 138,000 MWh higher than the Test Year. During summer into the fall of 2025, New
4 England experienced historic drought conditions, resulting in some of the lowest hydro
5 generation experienced in years, affecting Test Year generation. Rate Year generation is
6 based on a historical 20-year average, adjusted for known changes such as plant upgrades
7 or river flow requirements and planned outages.

IV. Transmission Costs

8 **Q44. Please provide an overview of GMP's purchased transmission and related costs.**

9 A44. GMP's purchased transmission costs consist of Regional Network Service ("RNS")
10 charges that are part of the NEPOOL Open Access Transmission Tariff ("NOATT"),
11 VELCO 1991 Vermont Transmission Agreement ("'91 VTA Common") charges, Hydro-
12 Quebec Phase 1 and 2 support charges, various ISO-NE and NEPOOL tariff charges, and
13 a number of smaller charges from other utilities whose transmission facilities GMP uses.
14 Transmission costs have grown significantly in recent years, primarily for RNS due to the
15 region's high-voltage Pool Transmission Facilities ("PTF") transmission network. RNS
16 costs represent approximately 63% of all purchased transmission costs for the Rate Year
17 and are not within GMP's direct control.

18 VELCO '91 VTA Common charge costs are the second-largest component of
19 transmission costs and vary significantly from year to year. Under the '91 VTA
20 Common, net VELCO monthly costs are assigned to Vermont electric distribution
21 companies based on each utility's share of trailing 12-month coincident and non-

1 coincident loads, reduced by the Purchaser's Internal Generation Adjustment ("IGAP")
2 credits. '91 VTA Common charges are a limited fraction of total VELCO costs due
3 primarily to reimbursements through ISO-NE for VELCO's PTF assets, which typically
4 represent 80% or more of VELCO's revenues. Please see VELCO Chief Financial
5 Officer Michele Nelson's testimony for more information on VELCO's actual Test Year
6 and projected Rate Year costs and revenues, and the resulting increase to the '91 VTA
7 Common charge.⁸

8 **Q45. What is the projected change in purchased transmission costs between the Test Year
9 and Rate Year, and what are the drivers of the increase?**

10 A45. Purchased transmission costs (which include certain ISO-NE tariff charges) for GMP are
11 projected to increase from \$137.8M in the Test Year to \$158.4M in the Rate Year, an
12 increase of \$20.6M. The primary drivers of the difference between Test Year and Rate
13 Year is a projected \$16.1M increase in the VELCO '91 VTA Common charge (which is
14 based on Ms. Nelson's forecast regarding VT Transco costs and revenues), and an
15 increase of \$4.8M in RNS charges.

16 From the Test Year to the Rate Year, GMP's VELCO VTA Common charge
17 expense is projected to increase from \$28.5M to \$44.6M, an increase of about \$16.1M.
18 Ms. Nelson explains the primary reasons for the increase. In summary, VELCO's
19 revenue requirement is projected to increase by about \$36.5M from the Test Year to the

⁸ Ms. Nelson's testimony presents statewide figures. GMP's share for the Rate Year is expected to be 76 percent of VELCO's total, which does not include GF in GMP's load.

1 Rate Year. Primary drivers of this increase are higher operating costs and higher
2 earnings before tax associated with significant recent and ongoing capital investments.
3 Operating costs rose by approximately \$24.70M, driven mainly by increased property
4 taxes and depreciation from major transmission and substation projects placed in service,
5 along with higher maintenance, administrative, interest, and AFUDC expenses. Earnings
6 before tax increase by about \$11.76 million, reflecting higher equity invested to fund
7 these projects and the resulting increase in return on equity and related income taxes,
8 partially offset by higher ISO-NE RNS reimbursements.

9 GMP charges for RNS were \$94.2M in the Test Year and are projected to
10 increase to \$99.0M in the Rate Year. The Test Year included three months with an RNS
11 rate of \$154/kw-yr and nine months at a rate of \$185/kw-yr. The first three months of the
12 Rate Year will be at a rate of \$184/kw-yr, and the remaining nine months is projected to
13 have a modest increase to \$186/kw-yr based on the most recent RNS rate forecast.⁹
14 Despite lower overall forecasted monthly peak loads resulting from GMP's many
15 successful peak shaving measures, including various energy storage programs, the higher
16 rates result in higher RNS costs in the Rate Year compared to the Test Year.

17 **Q46. Are there other projected changes in Transmission costs?**

18 A46. Purchased transmission costs other than RNS and VELCO VTA Common are not
19 expected to change significantly from the Test Year.

⁹ 2026 RNS Rate Overview and Forecast materials presented at the July 15, 2025 NEPOOL Reliability Committee/Transmission Committee meeting. (https://www.iso-ne.com/static-assets/documents/100025/a05.2a_tc_rns_rate_forecast_presentation.pdf)

V. Fiscal Year 2028–30 Power Supply and Revenue Forecasts

1 **Q47. How has GMP developed its power supply and revenue forecasts for the remainder**
2 **of the Proposed Plan?**

3 **A47.** Power supply costs and revenue forecast for the remainder of the Proposed Plan, through
4 FY30, used the same methods used for the Rate Year.

5 Based on Itron's retail sales forecast plus distribution losses, a forecast of the cost
6 to serve that load is developed using assumptions and adjustments consistent with those
7 used in traditional rate filings and described earlier in my testimony. A summary of
8 projected power supply costs by year of the Proposed Plan is set forth in **Exh. GMP-MF-**
9 **23.** Notable items for Fiscal Years 2028, 2029, and 2030 include the following:

10 • Changes to expected annual energy and capacity deliveries:
11 ○ Increasing energy deliveries from Great River Hydro.
12 ○ Twin Wind PPA is expected to have a full year of deliveries
13 beginning in FY28.
14 ○ Net-metering is forecast to continue experiencing annual growth,
15 though at a more modest pace than in prior years.
16 ○ The Standard Offer program is forecast to be fully built out by
17 FY28, with deliveries in FY29 and FY30 remaining flat.
18 ○ The NextEra Seabrook contract ramps down in June 2029 from 55
19 MW to 50 MW for energy and from 75 MW to 65 MW for
20 capacity.

1 ○ GMP's Granite Wind share declines by 19.8 MW in April 2027,
2 from 81 MW to 61 MW.

3 ○ First Light off-peak hydro purchase has declining volumes from
4 FY27 to FY28, and the contract expires in December 2029.

5 • Forward energy market prices reflect broker quotations from November 6, 2025,
6 consistent with the forwards used for the Rate Year. Average around-the-clock
7 energy prices are projected to decline throughout the forecast period, with the
8 FY28 annual average approximately 6% lower than the Rate Year and the FY30
9 annual average more than 28% lower than the Rate Year. These lower forward
10 energy prices translate into reduced costs to procure power to cover our open
11 energy position in future years.

12 • Projected PPA costs for indexed contracts such as HQUS and Seabrook reflect
13 forecasted PPA prices. Inflation and forward market prices are expected to
14 moderate over time, which will result in modest annual changes.

15 • The current Ryegate contract, which provides about 135,000 MWh of energy
16 annually, is assumed to expire in November 2028. No further contract extension
17 is assumed, and replacement energy to be procured at market prices is expected to
18 be lower than the current contract rate. Annual RES compliance costs increase
19 with increasing requirements for Tiers I, II, III and IV, and reflect current REC
20 market prices.

21 • Transmission costs are forecast using VELCO's projections for '91VTA costs and
22 ISO-NE's 5-year forecast for RNS rates. Costs from the '91VTA are projected to

1 decline from FY27 to FY28, followed by a resumption of annual increases in
2 FY29, consistent with VELCO's forecast. RNS costs are expected to experience
3 modest year-over-year increases of approximately 5 percent annually over the
4 Plan period.

5 **Q48. How and why will these forecasts be adjusted during the Proposed Plan?**

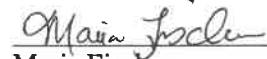
6 A48. These forecasts will be updated each year in the Annual Base Rate Filing. As noted in
7 my initial MYRP testimony, while GMP's power supply portfolio features many
8 relatively stable contracts, total power supply costs will continue to be subject to changes
9 over the term of the Proposed Plan due to factors that may not be foreseeable at the time
10 of this filing. Annual updates to the retail sales and power costs will ensure that GMP's
11 electric rates reasonably reflect expected net power supply costs and retail electric sales
12 for the applicable year, while limiting reliance on adjustors to recover or return funds to
13 customers. This annual adjustment framework has previously been approved by the
14 Commission in Case No. 18-1633-PET and Case No. 21-3707-PET. Therefore, while
15 these forecasts are important to include in consideration of our overall cost of service and
16 rate path through the term of the Proposed Plan, GMP's actual base rates will be
17 established based on annual reforecasts, closer in time to when power supply costs are
18 incurred.

1 **Q49. Please discuss GMP's current supplemental reporting on procurement and any**
2 **changes you feel are warranted?**

3 A49. While not explicitly incorporated into GMP's Current or Proposed Plan, I wish to address
4 reports GMP has been providing following the Commission's Order in Case No. 18-0974
5 supplementing its Rule 5.200 reporting. In a June 21, 2019, letter in that proceeding,
6 GMP informed the Commission that it had agreed with the DPS to provide supplemental
7 reporting, semiannually, on procurements under its short-term hedging program in
8 addition to Rule 5.200 reports starting in March 2020. GMP has been making those
9 filings since that time, but requests that they no longer be required as much of the
10 information provided is duplicative of other reports.

11 **Q50. Do you have any additional items to discuss regarding power supply costs or**
12 **planning under the Proposed Plan?**

13 A50. Yes, through this time of extreme volatility and inflationary pressure in power markets
14 and contracts, our work remains focused on delivering clean, reliable power at the lowest
15 reasonable cost. We continue to build and manage a diverse portfolio that includes long-
16 term power purchase agreements, owned generation, storage projects, and spot market
17 transactions. This diversified approach reduces risk for customers while meeting current
18 state energy goals and providing stability and predictability wherever possible. While
19 much of the New England region can experience swings exceeding 20 percent from
20 season to season, we have been able to maintain stability and predictability for customers
21 through these volatile conditions.


1 **Q51. Does that conclude your testimony at this time?**

2 A51. Yes.

Case No. 26-____-TF
Green Mountain Power Corporation
FY27 Rate Case & Proposed Plan
January 16, 2026

I, Maria Fischer, declare that the testimony and exhibits that I have sponsored are true and accurate to the best of my knowledge and belief and were prepared by me or under my direct supervision. I understand that if the above statement is false, I may be subject to sanctions by the Commission pursuant to 30 V.S.A. § 30.

Dated at Colchester, VT on the 16th day of January, 2026.

Maria Fischer